

Inovace studia hydrobiologických disciplín s důrazem na rozšíření možností uplatnění absolventů biologických oborů PřF UP v praxi.

reg. číslo: CZ.1.07/2.2.00/28.0173

Nutritional state of *Dreissena* reflects to environmental condition in Lake Balaton

19. 5. 2015

Dr. Zoltán Serfőző

Balaton Limnological Institute, Centre for Ecological Research, Hungarian Academy of Sciences, Tihany, Hungary

Balaton-monitoring program of the HAS TÁMOP-4.2.2.A-11/1/KONV-2012-0038 TÁMOP-4.2.2.A-11/1/KONV-2012-0064 Balaton Limnological Institute Centre for Ecological Research Hungarian Academy of Sciences

Lake Balaton

用下》

surface: 596 km² average depth: 3 m geology, climate, water level, catchment area, trophic gradient, urbanization-tourism (GDP) Industrial, agricultural use, natural-culturalhistorical heritage

Lake Balaton cacthment area and sampling points

Space view of Lake Balaton in springtime

NASA/Chris Hadfield, 2013. April

Recent ecological history of Lake Balaton

Istvánovics et al. http://www.vkkt.bme.hu/balaton

Water level fluctuation

Dreissena as an indicator of the environment

endurable factors: natural parameters Biological stress (predators, parasites, competition) pollutants

favoured factors: nutrient load

animal distribution

Why exactly Dreissena?

middle at the food chain (top-down sensitising) common (easy to find, non-protected, tolerant) filter feeder (direct contact, accumulation)

Primary goal:

Comprehensive assessment of the ecological state of Lake Balaton (Dreissenid watch program)

 Water chemistry 	\odot
 Water/sediment inorganic/organic pollutant 	
(heavy) metal	\odot
PAH, PCB	\odot
PPCP	٢
 Algae (nutrient) composition 	
chlorophyll-A content	\odot
species and frequency	8
 Community structure of macrozooplankton and 	
 Community structure of macrozooplankton and benthos 	8
 Community structure of macrozooplankton and benthos Dreissenids fitness 	8
 Community structure of macrozooplankton and benthos Dreissenids fitness condition index 	(C) (C)
 Community structure of macrozooplankton and benthos Dreissenids fitness condition index nutrient storage 	8 0 0
 Community structure of macrozooplankton and benthos Dreissenids fitness condition index nutrient storage pollutant accumulation 	8 0 0 0
 Community structure of macrozooplankton and benthos Dreissenids fitness condition index nutrient storage pollutant accumulation stress and protection gene profile 	8 0 0 0 0 0 0 0

Issues

How Dreissena enjoys itself in Lake Balaton?

In turn, can Dreissena fitness refer to environmental state?

Chlorophyll-A content

Dreissenid fitness

nutrient storage – 1. glycogen

Glycogen content (mean/SD) in the two basins of Lake Balaton

2,5

glucose concentration (mg/ml)

2

0,2 0 1,5

Van Handel, 1965

3,5

4

3

Dreissenid fitness nutrient storage - 2. lipid

concentration (mg/ml)

Frings et al., 1972

Dreissenid fitness

nutrient storage – 3. protein

Condition index (ratio)

Metal concentration (ICP-OES)

western basin eastern basin

Environmental mobility of elements: Mn>Cd>Cu>Pb>Ni>Cr>Zn>Fe

Organic pollutants concentration (GC-MS; GC-MS/MS)

western water

eastern water

western suspended m.

eastern suspended m.

PAH (μg/L; μg/g d.w.)

western basin

eastern basin

Phenolic compounds (ng/L; ng/g d.w.; ±RSD%)

PCB (only in eastern basin) PCB28: 14,2 ng/L PCB52 2,13 ng/L

non-steroid anti-inflammatory drugs (ng/L; ng/g d.w.; ±RSD%)

steroid (ng/L; ng/g d.w.; ±RSD%)

Summary

- Chlorophyll-A concentration and condition index of *Dreissena* were significantly higher in the Western basin.
- Macromolecular content shows seasonal variability.
- Heavy metals, in general, were at the low geochemical background level in the sediment, with a slight but significant increment in the Eastern basin.
- PAH concentration of the water, sediment and tissue were at the low µg/L, and µg/g level, with a slight Western-basin dominance. The PAH level was moderate but higher than earlier, and in comparison to other lakes.
- Two PCB congeners could be measured only in the water of the Eastern basin but at a surprisingly high concentration.
- The concentration of substituted phenol derivatives was always higher in the Western-basin, but they were only at the low ng/L and ng/g level in the water and the sediment, respectively. Among pharmaceuticals, naproxen and diclofenac could be measured at a low ng/L range with a slight elevated concentration in the Western basin.
- Steroids, such as cholesterol, coprostanol, and stigmasterol were also found mainly in the sediment.

Conclusion

- The current status of Lake Balaton can be characterized with a low nutrient load, and a little anthropogenic impact.
- Dreissena can be a suitable indicator of environmenal status referring to algae availability..
- Differences in the element concentrations and biotic values between the two basins can be explained by the different agricultural activity and agglomeration around the basins.